Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Med ; 28(1): 71-80, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35075289

RESUMO

Patients with Wiskott-Aldrich syndrome (WAS) lacking a human leukocyte antigen-matched donor may benefit from gene therapy through the provision of gene-corrected, autologous hematopoietic stem/progenitor cells. Here, we present comprehensive, long-term follow-up results (median follow-up, 7.6 years) (phase I/II trial no. NCT02333760 ) for eight patients with WAS having undergone phase I/II lentiviral vector-based gene therapy trials (nos. NCT01347346 and NCT01347242 ), with a focus on thrombocytopenia and autoimmunity. Primary outcomes of the long-term study were to establish clinical and biological safety, efficacy and tolerability by evaluating the incidence and type of serious adverse events and clinical status and biological parameters including lentiviral genomic integration sites in different cell subpopulations from 3 years to 15 years after gene therapy. Secondary outcomes included monitoring the need for additional treatment and T cell repertoire diversity. An interim analysis shows that the study meets the primary outcome criteria tested given that the gene-corrected cells engrafted stably, and no serious treatment-associated adverse events occurred. Overall, severe infections and eczema resolved. Autoimmune disorders and bleeding episodes were significantly less frequent, despite only partial correction of the platelet compartment. The results suggest that lentiviral gene therapy provides sustained clinical benefits for patients with WAS.


Assuntos
Terapia Genética/métodos , Vetores Genéticos , Transplante de Células-Tronco Hematopoéticas , Lentivirus/genética , Síndrome de Wiskott-Aldrich/terapia , Adolescente , Adulto , Criança , Pré-Escolar , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Humanos , Lactente , Resultado do Tratamento , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/imunologia , Adulto Jovem
3.
Gene Ther ; 14(9): 733-40, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17330087

RESUMO

Myostatin is a negative regulator of muscle mass whose inhibition has been proposed as a therapeutic strategy for muscle-wasting conditions. Indeed, blocking myostatin action through different strategies has proved beneficial for the pathophysiology of the dystrophin-deficient mdx mouse. In this report, we tested the inhibition of myostatin by AAV-mediated expression of a mutated propeptide in animal models of two limb-girdle muscular dystrophies: LGMD2A caused by mutations in the calpain 3 (CAPN3) gene and LGMD2D caused by mutations in the alpha-sarcoglycan gene (SGCA). In the highly regenerative Sgca-null mice, survival of the alpha-sarcoglycan-deficient muscle fibers did not improve after transfer of the myostatin propeptide. In calpain 3-deficient mice, a boost in muscle mass and an increase in absolute force were obtained, suggesting that myostatin inhibition could constitute a therapeutic strategy in this predominantly atrophic disorder.


Assuntos
Calpaína/deficiência , Terapia Genética/métodos , Músculo Esquelético/metabolismo , Distrofias Musculares/terapia , Sarcoglicanas/deficiência , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Calpaína/genética , Dependovirus/genética , Engenharia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Contração Isotônica , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/fisiopatologia , Distrofias Musculares/metabolismo , Distrofias Musculares/fisiopatologia , Mutação , Miostatina , Sarcoglicanas/genética , Transdução Genética/métodos , Fator de Crescimento Transformador beta/genética
5.
Am J Physiol Cell Physiol ; 280(6): C1561-9, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11350751

RESUMO

Lack of functional calpain 3 in humans is a cause of limb girdle muscular dystrophy, but the function(s) of calpain 3 remain(s) unknown. Special muscle conditions in which calpain 3 is downregulated could yield valuable clues to the understanding of its function(s). We monitored calpain 3 mRNA amounts by quantitative RT-PCR and compared them with those of alpha-skeletal actin mRNA in mouse leg muscles for different types of denervation and muscle injury. Intact muscle denervation reduced calpain 3 mRNA expression by a factor of 5 to 10, while alpha-skeletal actin mRNA was reduced in a slower and less extensive manner. Muscle injury (denervation-devascularization), which leads to muscle degeneration and regeneration, induced a 20-fold decrease in the mRNA level of both calpain 3 and alpha-skeletal actin. Furthermore, whereas in normal muscle and intact denervated muscle, the full-length transcript is the major calpain 3 mRNA, in injured muscle, isoforms lacking exon 6 are predominant during the early regeneration process. These data suggest that muscle condition determines the specific calpain 3 isoform pattern of expression and that calpain 3 expression is downregulated by denervation.


Assuntos
Calpaína/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas Musculares , Músculo Esquelético/fisiologia , Regeneração/fisiologia , Actinas/genética , Processamento Alternativo/fisiologia , Animais , Apoptose/fisiologia , Primers do DNA , Masculino , Camundongos , Denervação Muscular , Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nervo Isquiático/fisiologia , Nervo Isquiático/cirurgia
6.
J Cell Biol ; 151(7): 1583-90, 2000 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-11134085

RESUMO

Calpain 3 is known as the skeletal muscle-specific member of the calpains, a family of intracellular nonlysosomal cysteine proteases. It was previously shown that defects in the human calpain 3 gene are responsible for limb girdle muscular dystrophy type 2A (LGMD2A), an inherited disease affecting predominantly the proximal limb muscles. To better understand the function of calpain 3 and the pathophysiological mechanisms of LGMD2A and also to develop an adequate model for therapy research, we generated capn3-deficient mice by gene targeting. capn3-deficient mice are fully fertile and viable. Allele transmission in intercross progeny demonstrated a statistically significant departure from Mendel's law. capn3-deficient mice show a mild progressive muscular dystrophy that affects a specific group of muscles. The age of appearance of myopathic features varies with the genetic background, suggesting the involvement of modifier genes. Affected muscles manifest a similar apoptosis-associated perturbation of the IkappaBalpha/nuclear factor kappaB pathway as seen in LGMD2A patients. In addition, Evans blue staining of muscle fibers reveals that the pathological process due to calpain 3 deficiency is associated with membrane alterations.


Assuntos
Apoptose , Calpaína/deficiência , Proteínas de Ligação a DNA/metabolismo , Proteínas I-kappa B , Distrofias Musculares/enzimologia , Distrofias Musculares/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Animais , Calpaína/química , Calpaína/genética , Calpaína/metabolismo , Creatina Quinase/metabolismo , Cruzamentos Genéticos , Azul Evans , Feminino , Fertilidade , Deleção de Genes , Marcação de Genes , Genótipo , Masculino , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofias Musculares/genética , Distrofias Musculares/patologia , Inibidor de NF-kappaB alfa , Fenótipo , RNA Mensageiro/análise , RNA Mensageiro/genética , Sarcolema/patologia
7.
Am J Hum Genet ; 64(6): 1524-40, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10330340

RESUMO

Limb-girdle muscular dystrophy type 2A (LGMD2A) is an autosomal recessive disorder characterized mainly by symmetrical and selective atrophy of the proximal limb muscles. It derives from defects in the human CAPN3 gene, which encodes the skeletal muscle-specific member of the calpain family. This report represents a compilation of the mutations and variants identified so far in this gene. To date, 97 distinct pathogenic calpain 3 mutations have been identified (4 nonsense mutations, 32 deletions/insertions, 8 splice-site mutations, and 53 missense mutations), 56 of which have not been described previously, together with 12 polymorphisms and 5 nonclassified variants. The mutations are distributed along the entire length of the CAPN3 gene. Thus far, most mutations identified represent private variants, although particular mutations have been found more frequently. Knowledge of the mutation spectrum occurring in the CAPN3 gene may contribute significantly to structure/function and pathogenesis studies. It may also help in the design of efficient mutation-screening strategies for calpainopathies.


Assuntos
Calpaína/genética , Isoenzimas , Proteínas Musculares , Distrofias Musculares/genética , Mutação de Sentido Incorreto , Fragmentos de Peptídeos/genética , Polimorfismo Genético , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , Testes Genéticos , Humanos , Dados de Sequência Molecular , Fenótipo
8.
Brain ; 121 ( Pt 9): 1735-47, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9762961

RESUMO

The concept of limb-girdle muscular dystrophy (LGMD) is changing rapidly due to the advances in molecular genetics. Recently, seven different gene loci have been described, demonstrating that limb-girdle muscular dystrophy is a heterogeneous syndrome, which includes different diseases with a similar phenotype. In isolated populations which have little genetic exchange with neighbouring populations, an accumulation of cases may be found. We carried out an epidemiological study in Guipúzcoa, a small mountainous Basque province in northern Spain, and found the highest prevalence rate of LGMD described so far: 69 per million. Genetic studies demonstrated that 38 cases corresponded to the LGMD2A type, due to calpain-3 gene mutations. Only one patient with alpha-sarcoglycanopathy was found, and in 12 patients the genetic defect was not identified. Moreover, the particular calpain-3 mutation predominant in Basque chromosomes (exon 22, 2362AG-->TCATCT), has only been rarely found in the rest of the world. This observation strongly suggests a founder effect in the indigenous population of Guipúzcoa. The clinical characteristics of the patients with calpain-3 gene mutations were quite homogeneous and different from the other groups (sarcoglycanopathy and unknown gene defect), allowing for a precise clinical diagnostic. The disease onset was between the ages of 8 and 15 years, in most cases in the pelvic girdle, and the patients became wheelchair-bound between 11 and 28 years after onset. No pseudohypertrophy of calves or contractures were observed. No clear correlations were found between the nature and site of the mutation and the resulting phenotype.


Assuntos
Calpaína/genética , Cromossomos Humanos Par 15 , Isoenzimas/genética , Proteínas Musculares , Distrofias Musculares/epidemiologia , Distrofias Musculares/genética , Adulto , Idade de Início , Idoso , Sequência de Bases , Mapeamento Cromossômico , Primers do DNA , Éxons , Feminino , Genótipo , Geografia , Humanos , Incidência , Masculino , Prontuários Médicos , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Distrofias Musculares/fisiopatologia , Mutação , Fenótipo , Mutação Puntual , Reação em Cadeia da Polimerase , Polimorfismo Genético , Prevalência , Estudos Retrospectivos , Espanha/epidemiologia , Síndrome
9.
Muscle Nerve ; 21(11): 1493-501, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9771675

RESUMO

We report on the clinical, pathological, and genetic features of 7 patients with limb-girdle muscular dystrophy type 2A (LGMD2A) from three Japanese families. The mean age of onset was 9.7+/-3.1 years (mean+/-SD), and loss of ambulance occurred at 38.5+/-2.1 years. Muscle atrophy was predominant in the pelvic and shoulder girdles, and proximal limb muscles. Muscle pathology revealed dystrophic changes. In two families, an identical G to C mutation at position 1080 the in calpain 3 gene was identified, and a frameshift mutation (1796insA) was found in the third family. The former mutation results in a W360R substitution in the proteolytic site of calpain 3, and the latter in a deletion of the Ca2+-binding domain.


Assuntos
Calpaína/genética , Saúde da Família , Isoenzimas/genética , Músculo Esquelético/enzimologia , Distrofias Musculares/genética , Distrofias Musculares/patologia , Idade de Início , Biópsia , Criança , Análise Mutacional de DNA , Éxons , Feminino , Haplótipos , Humanos , Japão , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/ultraestrutura , Proteínas Musculares/análise , Músculo Esquelético/química , Músculo Esquelético/patologia , Distrofias Musculares/metabolismo , Mutação , Linhagem , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Ann Neurol ; 42(2): 222-9, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9266733

RESUMO

Autosomal recessive limb girdle muscular dystrophy (LGMD2) is a clinically and genetically heterogenous group of diseases involving at least six different loci. Five genes have already been identified: calpain-3 at LGMD2A (15q15), and four members of the sarcoglycan (SG) complex, alpha-SG at LGMD2D (17q21), beta-SG at LGMD2E (4q12), gamma-SG at LGMD2C (13q12), and delta-SG at LGMD2F (5q33-q34). The gene product at LGMD2B (2p13-p16) is still unknown and at least one other gene is still unmapped. We investigated 20 Turkish families (18 consanguineous) diagnosed as having LGMD2. Most of our patients had onset of symptoms before age 10. The phenotypes varied from severe to benign. We analyzed the SG complex by immunofluorescence and/or western blot. Genotyping was performed using markers defining the six known loci and the suspected genes were screened for mutations. Six of 17 index cases showed deficiency of the SG complex, by immunofluorescence and/or western blot. Seven cases involved one of the known genes of the SG complex (alpha, 2; beta, 1; and gamma, 4 cases), and five mutations were documented in the alpha- and gamma-SG genes. After linkage analysis, 10 families were characterized as having LGMD2A (calpain-3 deficiency), and all mutations were eventually identified. One family was classified as having LGMD2B and 1 family that has normal SGs was linked to the chromosome 5q33-q34 locus (LGMD2F). In 1 family there was no linkage to any of the known LGMD2 loci. It appears that in Turkey, there is a broad spectrum of genes and defects involved in LGMD2. It may be possible to correlate genotype to phenotype in LGMD2. All severe cases belonged to the gamma-SG-deficiency group. Nine calpain-3-deficient cases had intermediate and 1 had moderate clinical courses. The LGMD2B patient had a moderate clinical expression, whereas the LGMD2F case was truly benign.


Assuntos
Mapeamento Cromossômico , Distrofias Musculares/genética , Distrofias Musculares/fisiopatologia , Adolescente , Idade de Início , Calpaína/genética , Criança , Pré-Escolar , Cromossomos Humanos Par 13 , Cromossomos Humanos Par 15 , Cromossomos Humanos Par 17 , Cromossomos Humanos Par 2 , Cromossomos Humanos Par 4 , Cromossomos Humanos Par 5 , Proteínas do Citoesqueleto/genética , Distroglicanas , Feminino , Genes Recessivos , Ligação Genética , Marcadores Genéticos , Genótipo , Humanos , Masculino , Glicoproteínas de Membrana/genética , Distrofias Musculares/metabolismo , Sarcoglicanas , Turquia
11.
Am J Hum Genet ; 60(5): 1128-38, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-9150160

RESUMO

Limb-girdle muscular dystrophies (LGMDs) are a group of neuromuscular diseases presenting great clinical heterogeneity. Mutations in CANP3, the gene encoding muscle-specific calpain, were used to identify this gene as the genetic site responsible for autosomal recessive LGMD type 2A (LGMD2A; MIM 253600). Analyses of the segregation of markers flanking the LGMD2A locus and a search for CANP3 mutations were performed for 21 LGMD2 pedigrees from various origins. In addition to the 16 mutations described previously, we report 19 novel mutations. These data indicate that muscular dystrophy caused by mutations in CANP3 are found in patients from all countries examined so far and further support the wide heterogeneity of molecular defects in this rare disease.


Assuntos
Calpaína/genética , Heterogeneidade Genética , Isoenzimas/genética , Proteínas Musculares , Distrofias Musculares/etiologia , Mutação , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Cromossomos Humanos Par 15 , Europa (Continente) , Feminino , Marcadores Genéticos , Haplótipos , Humanos , Escore Lod , Masculino , Oriente Médio , Distrofias Musculares/classificação , Distrofias Musculares/patologia , Linhagem , Estados Unidos
14.
Cell ; 81(1): 27-40, 1995 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-7720071

RESUMO

Limb-girdle muscular dystrophies (LGMDs) are a group of inherited diseases whose genetic etiology has yet to be elucidated. The autosomal recessive forms (LGMD2) constitute a genetically heterogeneous group with LGMD2A mapping to chromosome 15q15.1-q21.1. The gene encoding the muscle-specific calcium-activated neutral protease 3 (CANP3) large subunit is located in this region. This cysteine protease belongs to the family of intracellular calpains. Fifteen nonsense, splice site, frameshift, or missense calpain mutations cosegregate with the disease in LGMD2A families, six of which were found within La Réunion island patients. A digenic inheritance model is proposed to account for the unexpected presence of multiple independent mutations in this small inbred population. Finally, these results demonstrate an enzymatic rather than a structural protein defect causing a muscular dystrophy, a defect that may have regulatory consequences, perhaps in signal transduction.


Assuntos
Calpaína/genética , Distrofias Musculares/genética , Mutação/genética , Sequência de Aminoácidos , Sequência de Bases , Cromossomos Humanos Par 15 , DNA/sangue , Análise Mutacional de DNA , Éxons/genética , Expressão Gênica , Testes Genéticos , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Distrofias Musculares/enzimologia , Distrofias Musculares/etnologia , Ácidos Nucleicos Heteroduplexes , Reação em Cadeia da Polimerase/métodos , Mapeamento por Restrição , Alinhamento de Sequência
15.
Genomics ; 23(3): 619-27, 1994 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-7851890

RESUMO

One hundred forty-nine chromosome 15 loci were mapped by PCR with respect to chromosome breakpoints in three somatic cell hybrids retaining total or part of chromosome 15 and to a 10-Mb YAC contig. This chromosome was subdivided into 5 regions, yielding an average resolution of more than 1 sequence tagged site per megabase. The mapped loci included 18 genes, 60 cDNA-derived sequence tagged sites, and 69 microsatellites. In addition, the amount of chromosome 15 retained in line A15.1 has been defined. This work represents the first attempt at an integration of the human physical, expression, and genetic maps of chromosome 15.


Assuntos
Cromossomos Humanos Par 15 , Hominidae/genética , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Mapeamento Cromossômico , Cromossomos Artificiais de Levedura , Cricetinae , Cricetulus , Primers do DNA , Bases de Dados Factuais , Expressão Gênica , Marcadores Genéticos , Humanos , Células Híbridas , Camundongos , Dados de Sequência Molecular , Distribuição de Poisson , Reação em Cadeia da Polimerase/métodos , Polimorfismo Genético , Homologia de Sequência de Aminoácidos
16.
Hum Mol Genet ; 3(2): 285-93, 1994 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8004096

RESUMO

A gene responsible for an autosomal recessive form of limb girdle muscular dystrophy (LGMD2, MIM number 253600) has been localized on chromosome 15. After genotyping additional markers of this chromosome, two were found to flank the disease locus within an interval that was assessed as 7 centiMorgans. The screening of the CEPH YAC libraries with the corresponding probes allowed the isolation of YACs which were used in fluorescence in situ hybridization to define the LGMD2 cytogenetic interval as 15q15.1-15q21.1. Four different approaches were pursued for the establishment of the physical map of this area which allowed the assembly of an uninterrupted YAC contig spanning an estimated 10-12 megabases, with an average STS resolution of 140 kb or for the 25 polymorphic microsatellites on this map, of 400 kb. Twelve genes and 25 genetic markers were positioned in this contig, which is constituted of a minimum of 10 clones.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos Humanos Par 15 , Genes Recessivos , Distrofias Musculares/genética , Passeio de Cromossomo , Cromossomos Artificiais de Levedura , Marcadores Genéticos , Genótipo , Humanos , Hibridização in Situ Fluorescente , Reação em Cadeia da Polimerase , Sitios de Sequências Rotuladas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...